
Numerical Methods for the Hamilton-Jacobi-Bellman
Equation in Optimal Control

Konstantinos Christopher Tsiolis
Department of Mathematics and Statistics

McGill University
kc.tsiolis@mail.mcgill.ca

Abstract

We provide a treatment of the dynamic programming approach to optimal control
problems, an approach to which the Hamilton-Jacobi-Bellman partial differential
equation is central. Using the minimum time to target problem as our guiding
example, we show how the fast sweeping method for the eikonal equation can be
used as a solution method for optimal control. In addition, we relate the use of
dynamic programming in optimal control to its use in reinforcement learning. For
a similarly posed minimum time to target problem, we view the Bellman equation
and value iteration as adaptations of the Hamilton-Jacobi-Bellman equation and
fast sweeping to the discrete-time setting.

1 Introduction

At a high level, the optimal control problem is one of influencing the trajectory of an object so as
to minimize some cost (or maximize some return). [2] provides a comprehensive early history of
optimal control, explaining how it developed in the mid-20th century out of the older calculus of
variations. It was conceived especially for problems in aerospace and robotics. Of special interest
in the aerospace context was finding optimal (in the sense of minimum time) flight paths to reach a
certain altitude given constraints on fuel.

The constraints of an optimal control problem are typically described by a system of ordinary
differential equations (ODEs) where time is the independent variable. These equations describe
the evolution of the state of the system (e.g., position, amount of fuel remaining). These dynamics
depend on the control (e.g., thrust), which is determined by the “user”. As the name suggests, we
only have influence over the control.

Richard Bellman proposed the dynamic programming method [1] in the 1950s as a means of
addressing the optimal control problem. His work showed that the optimal control can be found by
solving a partial differential equation, the Hamilton-Jacobi-Bellman equation. The solution to this
equation, referred to as the value function, assigns a value to each state. The optimal control is then
the one that navigates towards states with high value. These notions will be formalized in Section 2.

In our discussions of numerical methods and our experiments with continuous-time optimal control,
we focus on the minimum-time problem. The goal is to reach a target set from a point in the state
space in a minimal amount of time. If the speed of the object depends only on the current position
(and not on the current time), we show in Section 4.1 that the Hamilton-Jacobi-Bellman equation
reduces to the eikonal equation. In Section 5.1, we introduce the fast sweeping method [14], an
efficient numerical method for solving the eikonal equation. We then apply the fast sweeping method

to a simple minimum-time problem where the target set is the closed unit ball in R2. We are able to
approximate the true value function to two digits of accuracy with 1024 grid points (c.f. Section 6.1).

Throughout this paper, we will draw connections between optimal control and the more recently
developed field of reinforcement learning. The latter has seen a surge in popularity due to the success
of deep learning methods [7, 11]. In the simplest case, reinforcement learning can be viewed as the
application of optimal control to discrete-time problems. At a given time step, we find ourselves
in a given state and select an action, which then takes us to a new state at the next time step and
induces a reward. The goal is to maximize the cumulative reward, which is referred to as the return.
In Section 3, we show that there is an analog to the Hamilton-Jacobi-Bellman equation in this setting,
which is simply called the Bellman equation. In the tabular reinforcement learning setting (where the
state space is finite and reasonably small), the Bellman equation can be used to develop a fixed-point
iteration. This value iteration provably converges to the optimal value function, as we will see in
Section 5.2. We experiment with value iteration on the tabular gridworld environment in Section 6.2.

It should be noted that there is a key limitation to the parallels we draw between optimal control and
reinforcement learning in this paper. Even more important than the issue that tabular reinforcement
learning only captures a small subset of reinforcement learning problems of interest [12] is the issue
that we do not have access to the dynamics of the system in most reinforcement learning problems.
That is, in most cases, we do not know how the system will respond when we take an action. It is in
this context that reinforcement learning begins to diverge from optimal control as we pose it here.
Reinforcement learning agents must – either implicitly or explicitly – learn a model of the system’s
dynamics in order to select optimal actions.

2 Optimal Control with Dynamic Programming

In this section, we formally introduce the optimal control setting, from which the Hamilton-Jacobi-
Bellman equation will arise naturally. We draw on the book [6] and the introductory notes [8] and
[5].

To begin, consider the dynamics described by the following ordinary differential equation (ODE):{
x′(t) = f

(
x(t), α(t)

)
, t > 0

x(0) = x0.
(1)

Here, we think of x(·) : [0,∞)→ Rn as describing the position of a physical entity over time with
x0 as the starting point. α(·) : [0,∞)→ A is the control which exerts an influence on the trajectory
x(·). For example, we can imagine that x(·) represents the position of a car and α(·) captures the gas
and brake pedal. At each time step t, the control selects an action α(t) ∈ A, where A ⊆ Rm denotes
the set of admissible actions. Following [6] and [5], we take the set of admissible controls to be

A = {α : [0,∞)→ A : α(·) is measurable}.

Then, the objective in an optimal control problem is to select the control α(·) which maximizes the
return

Gx,t[α(·)] :=
∫ T

t

r
(
x(t), α(t)

)
dt+ g

(
x(T)

)
, (2)

where x(t) = x, T is some terminal time (though we can in principle also consider infinite-horizon
problems), r is the running reward, and g is the terminal reward.

Remark 1. In this paper, we use the standard terminology of reinforcement learning in describing
optimal control problems, so as to emphasize the connection between the two. In [5], G is referred to
as the “payoff". In [6], optimal control is equivalently formulated as minimizing a “cost" function.

When solving optimal control problems with dynamic programming, the main object of interest is
the value function

u(x, t) = sup
α(·)∈A

Gx,t

[
α(·)] (3)

2

for x ∈ Rn and 0 ≤ t ≤ T . This function captures the largest achievable return given the set of
admissible controls.

A major result is that the value function arises as the solution to the Hamilton-Jacobi-Bellman
equation, which we introduce in the theorem below. We present the theorem as it is stated in [5].

Theorem 1 (Hamilton-Jacobi-Bellman Equation). Assume that the value function u is continuously
differentiable. Then u is the solution of the Hamilton-Jacobi-Bellman equation{

ut(x, t) + maxa∈A

{
⟨f(x, a),∇xu(x, t)⟩+ r(x, a)

}
= 0, x ∈ Rn, 0 ≤ t < T

u(x, T) = g(x), x ∈ Rn.
(4)

Remark 2. The above theorem assumes that the value function is continuously differentiable. This
is not necessarily true. To handle the non-C1 case, it is necessary to consider weak solutions of
the Hamilton-Jacobi-Bellman equation. In this context, it can be shown that the value function
corresponds to the unique viscosity solution of the Hamilton-Jacobi-Bellman equation [3, 6].

Proof. We follow the proof from [5].

Let t ≥ 0, h > 0, and a ∈ A. Suppose α(·) = a for all t ≤ s ≤ t+ h and some fixed a ∈ A. Then,
from the definition of return and the value function,

u(x, t) ≥
∫ t+h

t

r
(
x(s), a

)
ds+ u

(
x(t+ h), t+ h

)
.

Rearranging and dividing by h, we have (by the Chain Rule),

u
(
x(t+ h), t+ h

)
− u(x, t)

h
+

1

h

∫ t+h

t

r
(
x(s), a

)
ds ≤ 0.

Letting h→ 0, we have

ut(x, t) + ⟨∇xu
(
x, t

)
, x′(t)⟩+ r

(
x, a

)
≤ 0.

We can use Equation 1 to write the derivative x′ in terms of f :

ut(x, t) + ⟨∇xu(x, t), f(x, a)⟩+ r(x, a) ≤ 0.

Since the above holds for any a ∈ A, we have

ut(x, t) + max
a∈A

{
⟨f(x, a),∇xu(x, t)⟩+ r(x, a)

}
≤ 0.

It remains to show that the above is in fact an equality. Suppose α∗(·) is the optimal control and x∗(·)
is the associated trajectory. Then, we can follow the same steps as above. We can decompose the
value function as

u(x, t) =

∫ t+h

t

r
(
x∗(s), α∗(s)

)
ds+ u

(
x∗(t+ h), t+ h

)
.

Rearranging and dividing by h, we have

u
(
x∗(t+ h), t+ h

)
− u(x, t)

h
+

1

h

∫ t+h

t

r
(
x∗(s), α∗(s)

)
ds = 0.

Let h→ 0 and suppose α∗(t) = a∗ ∈ A. Then

ut(x, t) + ⟨∇xu(x, t), x
∗′
(t)⟩+ r(x, a∗) = 0.

Once again using Equation 1, we conclude

ut(x, t) + ⟨f(x, a∗),∇xu(x, t)⟩+ r(x, a∗) = 0

for some a∗ ∈ A.

3

The above proof is illustrative of the Dynamic Programming Principle introduced by Richard Bellman
[1]. Using the value function to quantify the return we hope to obtain, we can decompose this return
along the trajectory as the return over a small period of time [t, t+h] plus the value function evaluated
at the end of that period. In this way, we have a recursive formulation for the value function.

In addition to providing the maximum return, the value function also indicates which action should
be selected – thus allowing us to solve the optimal control problem. The following theorem, stated
and proven in [5], illustrates how to select an optimal control from a value function.

Theorem 2. Given the value function u for an optimal control problem, the control defined by

α∗(t) = argmaxa∈A

[
⟨f(x(t), a),∇xu(x(t), t)⟩+ r(x(t), a)

]
(5)

is optimal.

Proof. Let x∗(·) be the trajectory associated to α∗(·).

Gx,t[α
∗(·)] =

∫ T

t

r
(
x∗(s), α∗(s)

)
ds+ g

(
x∗(T)

)
=

∫ T

t

(
− ut

(
x∗(s), s

)
− ⟨f

(
x∗(s), α∗(s)

)
,∇xu

(
x∗(s), s

)
⟩
)
ds+ g

(
x∗(T)

)
= −

∫ T

t

ut

(
x∗(s), s

)
+ ⟨∇xu

(
x∗(s), s

)
, x∗′

(s)⟩ ds+ g
(
x∗(T)

)
= −

∫ T

t

d

ds

[
u
(
x∗(s), s

)]
ds+ g

(
x∗(T)

)
= −u(x∗(T), T) + u(x, t) + g(x∗(T))

= u(x, t)

= sup
α(·)∈A

Gx,t[α(·)],

where the second line follows from the Hamilton-Jacobi-Bellman equation, the third line follows
from the ODE, and the fourth line follows from Chain Rule.

3 Reinforcement Learning

Reinforcement learning can be viewed as a discrete-time version of optimal control. Here, we replace
our controlled ODE model (1) with a Markov Decision Process (MDP). The latter is a discrete-time
stochastic process denoted by a tuple (S,A,R, P, P0), where

• S is the state space;

• A is the action space;

• R is the set of possible rewards;

• P : S ×A× S ×R→ [0, 1] is the transition probability function;

• P0 : S → [0, 1] is a probability function over states (the initial state distribution).

In an MDP, we begin in some initial state S0 ∼ P0. At each time step t ≥ 0, we select an action
At, which triggers a transition to a new state St+1 and incurs a reward Rt+1 based on P (·|St, At).
Actions are selected based on a learned policy π(·|s) : A→ [0, 1] which assigns a probability to each
action given the current state.

The goal of a reinforcement learning problem is to find a policy which maximizes the return

G =

T∑
t=0

γtRt+1, (6)

4

where 0 < γ ≤ 1 is a discount factor and T is an (optional) terminal time.1

Just as the value function in optimal control aids us in accomplishing the task of maximizing return,
we have an analogous value function in reinforcement learning. We follow the definitions and notation
from [12]. Given a policy π, we have the state value function

vπ(s) = Eπ[Gt|St = s] = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣St = s

]
. (7)

for all s ∈ S. This gives us the expected return incurred following policy π given that we start in
state s.

For simplicity, assume that S, A, R are finite. Here, we have an analog to the Hamilton-Jacobi-
Bellman equation, which is simply referred to as the Bellman equation. This gives us a recursive
formulation of the state value function.

Theorem 3 (Bellman Equation). Given a policy π, the state value function vπ(s) can be expressed as

vπ(s) = π(a|s)
∑

s′∈S,r∈R

p(St+1 = s′, Rt+1 = r |St = s,At = a)
[
r + γvπ(s

′)
]
. (8)

To simplify the notation for the proof and later discussions, we will henceforth write transition
probabilities as p(s′, r|s, a).

Proof. We follow the proof in [12]. We have

vπ(s) = Eπ[Gt|St = s]

= Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣St = s

]
= Eπ

[
Rt+1 + γGt+1

∣∣∣∣St = s

]
=

∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γEπ[Gt+1|St+1 = s′]

]
=

∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + vπ(s

′)
]
.

Since we are interested in the policy which maximizes the return, we arrive at a more direct analog to
our value function from optimal control,

v∗(s) = max
π

vπ(s), (9)

which is referred to as the optimal state-value function [12].

This leads us the following key theorem.

Theorem 4 (Bellman Optimality Equation). The optimal state-value function v∗ satisfies

v∗(s) = max
a

∑
s′,r

p(s′, r|s, a)
[
r + γv∗(s

′)
]
. (10)

1If we take T = ∞, then we must have γ < 1 in order to have finite return.

5

Proof. We once again follow the proof in [12]. Let π∗ be an optimal policy, i.e., vπ∗ = v∗. Then,

v∗(s) = Eπ∗ [Gt|St = s]

= max
a

Eπ∗ [Gt|St = s,At = a]

= max
a

Eπ∗

[
Rt+1 + γGt+1

∣∣St = s,At = a
]

= max
a

∑
s′,r

p(s′, r|s, a)
[
r + γEπ∗ [Gt+1|St+1 = s′]

]
= max

a

∑
s′,r

p(s′, r|s, a)
[
r + γv∗(s

′)
]
.

4 Examples of Optimal Control Problems

In this section, we describe three simple optimal control problems and their associated Hamilton-
Jacobi-Bellman equation (or just Bellman equation in the discrete-time case). This will naturally lead
us to a discussion of numerical methods for finding the value function.

4.1 Distance to a Set

Consider the setting of an object travelling at nonzero speed F (x) (i.e., the speed can depend on the
position, but not on time) towards a bounded nonempty target set Ω. The goal is to reach Ω – which
is equivalent to reaching Γ := ∂Ω – in the least time. Hence, we have the following dynamics, which
are independent of time:

x′ = Fa, ||a||2 = 1.

That is, the control selects the direction in which to move. Since we take the perspective of maximizing
return, we take the return to be the negative of the time τ to reach Γ from a point x ∈ Rn by taking
the actions prescribed by α.

Gx[α(·)] = −
∫ τ

0

1 dt = −τ,

Notice that the return does not depend on the current time t.

The value function u(x) is then simply the negative of the minimum time required to reach Γ from
a point x ∈ Rn. If we are travelling at constant unit speed, the value function is also equal to the
negative of the distance from the point x to the set Ω.

Due to time independence, we have ut = 0. Therefore, the Hamilton-Jacobi-Bellman equation is

max
||a||2=1

{
⟨Fa,∇xu⟩ − 1

}
= 0,

which, when paired with the terminal condition, becomes{
||∇xu|| = 1/F

u(x) = 0, x ∈ Γ.
(11)

This is called the eikonal equation.

4.2 Rocket Railroad Car

The rocket railroad car problem is a classic toy problem for optimal control. We present the
formulation from [5].

Suppose that we have a railroad car with rocket propellers attached to each end. We can control the
rockets so as to provide a thrust in the positive or negative direction (suppose the magnitude of the
thrust is bounded by 1). The goal of the problem is to reach the origin at a velocity of zero given that
we start at some other point with a velocity of zero.

6

For this problem, the state x(·) = [x1(·), x2(·)]T is two-dimensional. x1(·) captures the position
along the railroad track and x2(·) captures the velocity. The action space is one-dimensional, with
actions corresponding to acceleration. Hence, we have the dynamics

x′
1(t) = x2(t), t ≥ 0

x′
2(t) = α(t), t ≥ 0

x1(0) = x0
1

x2(0) = x0
2.

We can write this more compactly asx′(t) =

[
0 1

0 0

]
x(t) +

[
0

1

]
α(t), t ≥ 0

x(0) = x0.

(12)

Similarly to the distance problem in the previous subsection, the return is the negative time to reach
the origin

Gx[α(·)] = −
∫ T

0

1 dt = −τ.

The Hamilton-Jacobi-Bellman equation is then

max
|a|≤1
{x2ux1 + aux2 − 1} = 0, (13)

which, when paired with the terminal condition, becomes{
x2ux1

+ |ux2
| = 1

u(0, 0) = 0.
(14)

From (13), we notice that α∗(x1, x2) = sgn(ux2).

[5] shows that the solution to (14) is

u(x1, x2) =

{
−x2 − 2

(
x1 +

1
2x

2
2

) 1
2 , x1 ≥ − 1

2x2|x2|
x2 − 2

(
− x1 +

1
2x

2
2

) 1
2 , x1 < − 1

2x2|x2|.
(15)

Hence, when x1 ≥ − 1
2x2|x2|, we have

ux2 = −1−
(
x1 +

1

2
x2
2

)− 1
2

x2 (16)

and when x1 < − 1
2x2|x2|, we have

ux2
= 1−

(
− x1 +

1

2
x2
2

)− 1
2

x2. (17)

We visualize the exact value function and the optimal control in Figures 1 and 2 respectively. The
optimal control reflects the intuition one might have about the problem. To see this, suppose that
we begin on the right-hand side of the origin. Then, according to the optimal control, it is best to
maximally accelerate in the direction of the origin (a = −1) until we reach a certain proximity. Then,
maximally decelerate / brake (a = 1) so as to ensure that we reach the origin at zero velocity.

4.3 Gridworld

Gridworld is a simple example of a reinforcement learning problem. Suppose that we have a d-
dimensional grid where all sides have length n. We index points in the grid as vectors [v1, . . . , vd],
where vi ∈ {0, 1, . . . , n− 1} for 1 ≤ i ≤ d. Suppose that we have a reward of 1 at the “corner” state

7

Figure 1: Contour plot of the exact value function u for the rocket car problem.

Figure 2: Optimal control for the rocket car problem.

[(n− 1), (n− 1), . . . , (n− 1)] and a reward of 0 at all other states. Hence, the goal of the problem is
to navigate towards this corner. The available actions are to increment a coordinate in the current
state by ±1 or to stay in the current state. If we reach a boundary and select an action that would take
us out of the grid, we simply stay in the current state.

It is clear from the problem specification that the optimal policy is simply to increment each coordinate
of the state by +1 until we reach the target state. The number of times we must increment corresponds
to the ℓ1 distance between the current state and the target state. Furthermore, from the Bellman
optimality equation (10), we see that the optimal value function is inversely proportional to the ℓ1

distance. We visualize the gridworld problem in Figure 3.

5 Numerical Methods

In this section, we explore numerical methods to aid us in solving two of the optimal control problems
posed in the previous section. We discuss the method we use to solve the eikonal equation (the fast
sweeping method) and value iteration for tabular reinforcement learning.

8

Figure 3: Illustration of the gridworld problem for n = 10 and d = 2. The bottom-right corner is
shaded to indicate that it incurs a reward of 1.

5.1 The Fast Sweeping Method for the Eikonal Equation

The fast sweeping method [14] is framed by its author as an improvement over the fast marching
method [10] for numerically solving the eikonal equation. Both methods discretize d-dimensional
space into a grid with Nd points and update the solution outward from the target set in iterative
fashion. However, due to the heapsort operation used by the fast marching method, the fast sweeping
method is more efficient. The latter has an O(N) time complexity, while the former is O(N logN).

We recall the setting of the eikonal equation from (11), which arose as part of finding the distance to
a target set Ω. Following [14], we present the fast sweeping algorithm for the two-dimensional case,
though it is applicable in any dimension. We begin with an initialization that captures the terminal
condition. To do this, we initialize the grid points close to the boundary Γ to the exact solution (or an
approximate interpolated solution if this is more practical). All other grid points are initialized to a
high value (much higher than their actual distance to Ω). We note that [14] describes the initialization
process rather loosely, suggesting that the exact criteria for “closeness" to the boundary and the
quality of an interpolated solution at these grid points are flexible2.

Let i represent a horizontal index and j represent a vertical index. For a grid with spacing h, we
denote the point on the grid at index (i, j) by (xi, yj), the speed at this point by Fi,j , the numerical
solution at this point by uh

i,j . The fast sweeping algorithm proceeds by iterating (“sweeping") over
the grid along four different orderings repeatedly until convergence:

(1) i = 1 : N , j = 1 : N

(2) i = N : 1, j = 1 : N

(3) i = N : 1, j = N : 1

(4) i = 1 : N , j = N : 1.

At each index (i, j) in a sweep, we find a “candidate” update to uh
i,j by solving the equation[

(ūh
i,j − uh

xmin)
+
]2

+
[
(ūh

i,j − uh
ymin)

+
]2

= F 2
i,jh

2 (18)

for ūh
i,j , where uh

xmin = min(uh
i−1,j , u

h
i+1,j), u

h
ymin = min(uh

i,j−1, u
h
i,j+1), and (·)+ is the function

returning the positive part of a real number. On the boundary of the grid, we modify the above equation

2Further evidence of this “looseness” can be observed in the convergence result for the fast sweeping method.

9

to a one-sided difference. In the two-dimensional case, [14] shows that (18) has the closed-form
solution

ūh
i,j =

{
min(a, b) + Fi,jh, |a− b| ≥ Fi,jh
a+b+

√
2F 2

i,jh
2−(a−b)2

2 , |a− b| < Fi,jh,
(19)

where a = uh
xmin, b = uh

ymin.

In n dimensions, [14] summarizes a procedure to recover the exact solution to an equation of the
form [

(ū− a1)
+
]2

+ · · ·+
[
(ū− an)

+
]2

= F 2
i,jh

2. (20)

Assume without loss of generality that a1 ≤ a2 ≤ · · · ≤ an, and let an+1 = ∞. We observe that
since h2 > 0, there must exist 1 ≤ p ≤ n such that

(ū− a1)
2 + · · ·+ (ū− ap)

2 = F 2
i,jh

2. (21)
and ap ≤ ū ≤ ap+1. Once p is determined, then it suffices to solve the above quadratic equation for
ū and take the larger of the two solutions.

It remains to determine p, but the procedure is immediate from our discussion above. For each
1 ≤ p̃ ≤ n, solve the quadratic equation (21) (replace p with p̃) for ū and take the larger of the two
solutions. If the solution is in [ap̃, ap̃+1], stop and take this solution to be ūh

i1,...,in
.

After solving the equation simply take uh
i,j ← min(ūh

i,j , u
h
i,j).

[14] proves the following theoretical guarantee for the performance of the fast sweeping method.
Theorem 5. If the distance function in the neighbourhood of an arbitrary data set Γ in Rn is given
initially, let uh(x,Γ) be the numerical solution by the fast sweeping method after 2n sweeps. We have

ūh(x,Γ) ≤ uh(x,Γ) ≤ d(x,Γ) +O
(
h log 1

h

)
.

Suppose we are in the case of constant speed (i.e., F = 1). The intuition behind the fast sweeping
method is similar to the one underlying Dijkstra’s algorithm [4] for finding the shortest distance
between nodes in a graph. In the latter case, we find the distance between a source node s and some
vertex v by considering the decomposition d(s, v) ≤ d(s, u) + d(u, v) for each neighbour u of v.
Assuming the distances d(s, u) are correct, then the distance d(s, v) can be found by taking the
minimum of d(s, u) + d(u, v) over all neighbours u of v. Let u∗ denote the neighbour corresponding
to this minimum. Then, we can view the distance information as propagating outward from s to v via
u∗.

As is indicated in [14], the above intuition carries over perfectly to the one-dimensional case of the
fast sweeping method. In this case, information propagates from the boundary Γ to all points in
R. Hence, if the value uh

i is not already correct, it will be updated via its neighbouring grid points
as min(uh

i−1, u
h
i+1) + h. By sweeping over the grid from left to right and then from right to left,

we ensure that we capture both possible directions of information propagation. Hence, uh
i will be

updated to the correct value at some point during the two sweeps.

In higher dimensions, there are infinitely many possible directions of information propagation (as
opposed to just two in the one-dimensional case). However, as we can see in the two-dimensional
case with the four sweeps that we specified, we can effectively capture this using the right sweeps
and a sufficiently fine grid. For example, if Γ is the unit circle, information propagates along the
directions [±1,±1]T , where the sign is determined by the quadrant and whether we are inside or
outside of the circle (see Figure 2.2 from [14]). Each of these four possible directions of propagation
is linked to one of the four sweeps that we conduct in the two-dimensional case.

5.2 Value Iteration for Gridworld

Recall the Bellman optimality equation (10). This result is significant in that it gives us a recursive
formulation for the optimal state-value function. We can use this to set up a fixed point iteration

vk+1(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γvk(s′)] (22)

10

for all s ∈ S. This approach is referred to as value iteration [12].

To legitimize this, we must appeal to the Banach Fixed Point Theorem. We follow the discussion in
[9].

Since we are assuming a finite state space, we encode our fixed point iteration using matrices and
vectors. Let S = {s1, . . . , sn}. Let V = [v(s1), . . . , v(sn)]

T denote our estimate of the state-value
function at each state. For each action a ∈ A, define a matrix P a and a vector Ra such that

P a
ij = P(St+1 = sj |St = si, At = a) Ra

i = E[Rt+1|St = si, At = a].

Then, we can encode our value iteration update as

Vk+1 = max
a

Ra + γP aVk, (23)

where the maximum is understood as being taken row-wise.

Then, we define our update operator

T ∗(V) = max
a

Ra + γP aV. (24)

Lemma 6. Suppose γ < 1. Then, T ∗ is a contraction mapping in the ℓ∞ norm.

Proof. Let U, V ∈ Rn and consider the entry Ui, Vi for some 1 ≤ i ≤ n. Assume without loss of
generality that T ∗(U)i ≥ T ∗(V)i. Moreover, let

a∗i = argmaxa
∑
s′,r

p(s′, r|s, a)
[
r + γU(s′)

]
.

Then

0 ≤ T ∗(U)i − T ∗(V)i

≤
∑
s′,r

p(s′, r|s, a∗i)[r + γU(s′)]−
∑
s′,r

p(s′, r|s, a∗i)[r + γV (s′)]

= γ
∑
s′,r

p(s′, r|s, a∗i)[U(s′)− V (s′)]

≤ γ
∑
s′,r

p(s′, r|s, a∗i)||U − V ||∞

= γ||U − V ||∞.

Theorem 7. Suppose γ < 1. Then, value iteration converges to v∗.

Proof. From the Bellman optimality equation, we have that v∗ is a fixed point of T ∗. Since T ∗ is a
contraction mapping, we immediately deduce the result from the Banach Fixed Point Theorem.

The above setting with a finite state space is often referred to as tabular reinforcement learning. It
derives its name from the fact that the value function can be stored as a table of values. This is the
setting of our gridworld toy problem. However, even if the state space is finite, it is often to large
for storing the value function in a table to be reasonable. This can already be seen by scaling the
dimension of gridworld, which leads to an exponential growth in the number of states. As another
example, one cannot hope to store a value for every single position in chess.

When we move out of the tabular setting, the theory of reinforcement learning lies on shaky ground.
To handle non-tabular problems, practitioners resort to function approximation [12]. That is, the
value function is parametrized as vθ and states s ∈ S are represented by features f(s) ∈ Rd. There is
no rigorous definition of a feature – it is understood to be an encoding of a state that aids in solving
the task. One desideratum is that nearby states (i.e., where one state is reachable from another with
few actions) be assigned similar features (e.g., in the sense of Euclidean distance between features).

11

Figure 4: Numerical solution uh(x, y) to the eikonal equation for distance to the unit circle using a
1024× 1024 grid with x ∈ [−3, 3], y ∈ [−3, 3]. The graph of uh(x, y) is depicted on the left and the
level curves of uh(x, y) are depicted on the right.

Convergence results do exist in the case of linear function approximators, i.e., when vθ(s) = θT f(s)
for some θ ∈ Rd [13, 12]. However, there are no such results in the nonlinear setting (i.e., when the
value function is approximated using a deep neural network).

6 Experiments

In this section, we detail our experiments on the two example problems presented in Section 4 using
the numerical methods presented in Section 5.

6.1 Distance to a Set

Recalling the setup from Section 4.1, we take the target set to be the closed unit ball in R2

Ω = {(x, y) : x2 + y2 ≤ 1}

and the boundary is thus the unit circle

Γ = {(x, y) : x2 + y2 = 1}.

Hence, the optimal control problem reduces to finding the (signed) distance between a point (x, y) ∈
R2 and the unit circle. Clearly, the exact solution is simply u(x, y) =

√
x2 + y2 − 1.

We consider the ℓ∞h error of numerical solutions (via the fast sweeping method) to the eikonal
equation for this problem for different settings of the grid spacing h. The latter is determined by
the number of grid points on each axis. For both the x and y-axes, we take N points from the
interval [−3, 3], where N ∈ {16, 32, 64, 128, 256, 512, 1024}. Our Python implementation of the
fast sweeping method for this problem is provided in Appendix A.

Our results for the unit circle experiment are summarized in Figures 4 and 5. We empirically achieve
a better convergence rate than what is predicted by the theory and can approximate the true solution
to 2 digits of accuracy on the rectangle [−3, 3]× [−3, 3].

6.2 Gridworld

For our experiment, we take gridworld with n = 10 and d = 2 for a total of 100 states. We conduct
value iteration by sweeping over all states repeatly and applying the aforementioned T ∗ operator.
The progression of the algorithm, as depicted in Figure 6, gives the intuition of value propagating
outward from the target set, but which gets dampened as it gets further and further away. Nearby

12

Figure 5: Convergence plot for the numerical solution uh(x, y) to the eikonal equation for distance to
the unit circle. The blue line corresponds to the error of the numerical solution while the dotted green
line corresponds to the asymptotic bound from Theorem 5. The error considered here is the ℓ∞h error.

states to the target get nontrivial updates earlier than further states. This can be seen from the first
sweep. Since we only look ahead by one step during value iteration, only the immediate neighbours
of the target state will “see” the reward of 1 at the target and thus update their values. In the second
step, the neighbours of the neighbours will get updated, and so on.

From the above perspective, we see the similarity between the fast sweeping method used for the
eikonal equation and the value iteration used here. Just as in fast sweeping, the value of each grid
point is adjusted based on the values of its neighbours which are nearest to the target set (i.e., which
reflect the direction that distance is “propagating”).

7 Conclusion

In this paper, we have explored the dynamic programming method for optimal control and rein-
forcement learning problems. In our particular context, we pose optimal control and reinforcement
learning as being two sides of the same coin, with the former addressing the continuous-time case
and the latter addressing the discrete-time case. In the optimal control setting, we discussed how the
optimal control can be extracted from the value function, which in turn arises as the solution to the
Hamilton-Jacobi-Bellman equation for the problem. In reinforcement learning, the optimal policy is
also extracted from the value function, which is the unique solution of the Bellman equation. For
the minimum time to target problem, we solve the continuous-time version with fast sweeping for
the eikonal equation and the discrete-time version with value iteration. While the parallels between
optimal control and reinforcement learning are instructive, we must be careful in attempting to
generalize them. The difference between optimal control and reinforcement learning truly manifests
when we consider reinforcement learning problems where the system dynamics are not provided, as
is often the case in practice.

Acknowledgements

We wish to acknowledge the input of Prof. Jean-Christophe Nave, who has been supportive throughout
the development of this project and who in particular suggested the use of fast sweeping for the
eikonal equation. We also wish to thank Prof. Adam Oberman for inspiring the selection of this
project topic.

13

(a) After 1 sweep (b) After 2 sweeps

(c) After 3 sweeps (d) After 5 sweeps

(e) After 10 sweeps (f) After 20 sweeps

Figure 6: Plot of the learned value function for gridworld during value iteration after a specified
number of sweeps over the state space. Darker indicates higher value.

14

A Implementation of the Fast Sweeping Method

We implement the fast sweeping method in Python. The following is the main “sweeping” loop
which, given an ordering over indices, iterates over the grid points to update the solution value.

def sweep(u, h, N, i_list, j_list):
for i in i_list:

for j in j_list:
if i == 0:

a = u[i+1,j]
elif i == N-1:

a = u[i-1,j]
else:

a = min(u[i-1,j], u[i+1,j])

if j == 0:
b = u[i,j+1]

elif j == N-1:
b = u[i,j-1]

else:
b = min(u[i,j-1], u[i,j+1])

if abs(a-b) >= h:
u_bar = min(a,b) + h

else:
u_bar = (a+b+np.sqrt(2*(h**2)- (a-b)**2))/2

u[i,j] = min(u[i,j], u_bar)

Below is the code specific to the problem of finding the distance function to the unit circle (for a
variety of grid spacings).

N_list = [16, 32, 64, 128, 256, 512, 1024]
h_list = []
error = []

for N in N_list:
Nx = N
Ny = N
x_low = -3
x_high = 3
dx = (x_high - x_low) / (Nx-1)
h = dx
h_list.append(h)
y_high = 3
y_low = -3
dy = (y_high-y_low) / (Ny-1)
x = np.arange(0,Nx) * dx + x_low
y = np.arange(0,Ny) * dy + y_low
xx,yy = np.meshgrid(x,y)

u_exact = np.zeros((Nx,Ny))
u_exact = np.sqrt(np.square(xx) + np.square(yy)) - 1
u = np.zeros((Nx, Ny))
u = np.where(u_exact <= 1e-2, u_exact, 100)

15

i_forward = np.arange(Nx)
j_forward = np.arange(Ny)
i_backward = np.arange(Nx-1,-1,-1)
j_backward = np.arange(Ny-1,-1,-1)

for _ in range(10):
sweep(u,h,N,i_forward,j_forward)
sweep(u,h,N,i_backward,j_forward)
sweep(u,h,N,i_backward,j_backward)
sweep(u,h,N,i_forward,j_backward)

error.append(np.max(abs(u-u_exact)))

B Implementation of Gridworld and Value Iteration

Below is our Python implementation of the gridworld environment. We base it on our existing
implementation that we have posted in a public repository.3

import numpy as np
import matplotlib.pyplot as plt
class GridEnv():

def __init__(self, dim=2, length=10):
self.dim = dim
self.length = length #Side length of grid (all sides of equal length)
self.num_states = self.length**self.dim
self.num_actions = 2 * self.dim + 1
self.actions = np.arange(self.num_actions)

self.reset()

def reset(self):
self.state = np.random.randint(low=0, high=self.length-1, size=(self.dim,))

def compute_reward(self, state):
reward = 1
for i in range(self.dim):

if state[i] != self.length - 1:
reward = 0
break

return reward

#Map state to a scalar value
def hash_state(self, state):

hash = 0
for i in range(self.dim):

hash += (self.length**i) * state[i]

return int(hash)

#Map scalar value to a state

3https://github.com/kctsiolis/rl-features/blob/master/gridworld.py

16

def unhash_state(self, hash):
state = np.zeros(self.dim)
for i in range(self.dim):

hash, state[i] = divmod(hash, self.length)

return state

def step(self, action):
if action > 2 * self.dim or action < 0:

return ValueError(’Action must be in range [0, {}].’.format(self.num_actions))
if action == self.num_actions - 1: #Do nothing

return self.state

coord = self.state[action // 2]
dir = 2 * (action % 2) - 1 #1 is left, 1 is right
if (coord == 0 and dir == -1) or (coord == self.length - 1 and dir == 1):

return self.state
self.state[action // 2] += dir

return self.state

#Look ahead without actually taking a step
def lookahead(self, state, action):

new_state = np.copy(state)
if action > 2 * self.dim or action < 0:

return ValueError(’Action must be in range [0, {}].’.format(self.num_actions))
if action == self.num_actions - 1: #Do nothing

return new_state

coord = state[action // 2]
dir = 2 * (action % 2) - 1 #-1 is left, 1 is right
if (coord == 0 and dir == -1) or (coord == self.length - 1 and dir == 1):

return new_state
new_state[action // 2] += dir

return new_state

We implement value iteration for gridworld as follows.

def value_iteration(cur_state):
updates = np.zeros(env.num_actions)
for a in env.actions:

next_state = env.lookahead(cur_state, a)
updates[a] = env.compute_reward(next_state) + values[env.hash_state(next_state)]

values[env.hash_state(cur_state)] = max(updates)

n_sweeps = 20
for _ in range(n_sweeps):

for i in range(env.num_states):
state = env.unhash_state(i)
value_iteration(state)

17

References
[1] R. Bellman. The theory of dynamic programming. Bulletin of the American Mathematical

Society, 60(6):503–515, 1954.

[2] A. E. Bryson. Optimal control-1950 to 1985. IEEE Control Systems Magazine, 16(3):26–33,
1996.

[3] M. G. Crandall and P.-L. Lions. Viscosity solutions of hamilton-jacobi equations. Transactions
of the American mathematical society, 277(1):1–42, 1983.

[4] E. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[5] L. C. Evans. An introduction to mathematical optimal control theory version 0.2.

[6] L. C. Evans. Partial differential equations, volume 19. American Mathematical Soc., 2010.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529–533, 2015.

[8] A. Oberman. Nonlinear elliptic partial differential equations: Applications and numerical
methods. 2016.

[9] P. Poupart. Module 6 - value iteration. CS 886 Sequential Decision Making and Reinforcement
Learning, 2013.

[10] J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Proceedings
of the National Academy of Sciences, 93(4):1591–1595, 1996.

[11] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489, 2016.

[12] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[13] J. Tsitsiklis and B. Van Roy. Analysis of temporal-diffference learning with function approxi-
mation. Advances in neural information processing systems, 9, 1996.

[14] H. Zhao. A fast sweeping method for eikonal equations. Mathematics of computation,
74(250):603–627, 2005.

18

	Introduction
	Optimal Control with Dynamic Programming
	Reinforcement Learning
	Examples of Optimal Control Problems
	Distance to a Set
	Rocket Railroad Car
	Gridworld

	Numerical Methods
	The Fast Sweeping Method for the Eikonal Equation
	Value Iteration for Gridworld

	Experiments
	Distance to a Set
	Gridworld

	Conclusion
	Implementation of the Fast Sweeping Method
	Implementation of Gridworld and Value Iteration

